mathcentre

Indices or Powers

A power, or an index, is used when we want to multiply a number by itself several times. It enables us to write a product of numbers very compactly. The plural of index is indices. In this leaflet we remind you of how this is done, and state a number of rules, or laws, which can be used to simplify expressions involving indices.

Powers, or indices

We write the expression

$$
5 \times 5 \times 5 \times 5 \quad \text { as } \quad 5^{4}
$$

We read this as 'five to the power four'.
Similarly

$$
a \times a \times a=a^{3}
$$

We read this as ' a to the power three' or ' a cubed'.
In the expression 5^{4}, the index is 4 and the number 5 is called the base. More generally, in the expression b^{c}, the index is c and the base is b. Your calculator will probably have a button to evaluate powers of numbers. It may be marked x^{y} or $x^{\wedge} y$. Check this, and then use your calculator to verify that

$$
5^{4}=625 \quad \text { and } \quad 13^{7}=62748517
$$

Exercises

1. Without using a calculator work out the value of
a) 4^{3},
b) 5^{5},
c) 2^{6},
d) $\left(\frac{1}{2}\right)^{3}$,
e) $\left(\frac{2}{3}\right)^{2}$,
f) $\left(\frac{2}{5}\right)^{3}$.
2. Write the following expressions more concisely by using an index.
a) $a \times a \times a \times a \times a \times a$,
b) $(3 a b) \times(3 a b) \times(3 a b)$,
c) $\left(\frac{a}{b}\right) \times\left(\frac{a}{b}\right) \times\left(\frac{a}{b}\right) \times\left(\frac{a}{b}\right)$.

The rules of indices

To manipulate expressions involving indices we use rules, sometimes known as the laws of indices. The laws should be used precisely as they are stated - do not be tempted to make up variations of your own! The three most important rules are given here:

First rule

$$
a^{m} \times a^{n}=a^{m+n}
$$

When expressions with the same base are multiplied, the indices are added.

Examples

(a) Using the first rule we can write

$$
8^{3} \times 8^{4}=8^{3+4}=8^{7}
$$

(b) Using the first rule we can write

$$
a^{4} \times a^{7}=a^{4+7}=a^{11}
$$

You could verify the first result by evaluating both sides separately.

Second rule

$$
\left(a^{m}\right)^{n}=a^{m n}
$$

Note that m and n have been multiplied to give the new index $m n$.

Examples

$$
\left(3^{5}\right)^{2}=3^{5 \times 2}=3^{10} \quad \text { and } \quad\left(\mathrm{e}^{x}\right)^{y}=\mathrm{e}^{x y}
$$

Third rule

$$
\frac{a^{m}}{a^{n}}=a^{m-n} \quad \text { or equivalently } \quad a^{m} \div a^{n}=a^{m-n}
$$

When expressions with the same base are divided, the indices are subtracted.

Examples

We can write

$$
\frac{9^{5}}{9^{3}}=9^{5-3}=9^{2} \quad \text { and similarly } \quad \frac{a^{7}}{a^{4}}=a^{7-4}=a^{3}
$$

It will also be useful to note the following important results:

$$
a^{0}=1, \quad a^{1}=a
$$

So, any number (other than zero) raised to the power 0 is 1 . This result can be obtained from the third rule by letting $m=n$.

Further, any number raised to the power 1 is itself.

Exercises

3. In each case choose an appropriate law to simplify the expression:
a) $5^{3} \times 5^{13}$,
b) $8^{13} \div 8^{5}$,
c) $x^{6} \times x^{5}$,
d) $\left(a^{3}\right)^{4}$,
e) $\frac{y^{7}}{y^{3}}$,
f) $\frac{x^{8}}{x^{7}}$.
4. Use one of the laws to simplify, if possible, $x^{8} \times y^{5}$.

Answers

1. a) 64 ,
b) 3125 ,
c) 64 ,
d) $\frac{1}{8}$,
e) $\frac{4}{9}$,
f) $\frac{8}{125}$.
2. a) a^{6},
b) $(3 a b)^{3}$,
c) $\left(\frac{a}{b}\right)^{4}$.
3. a) 5^{16},
b) 8^{8},
c) x^{11},
d) a^{12},
e) y^{4},
f) $x^{1}=x$.
4. This cannot be simplified because the bases are not the same.
